
KMA315 Analysis 3A: Solutions to Problems 1

1. Find the infimum (greatest lower bound) and supremum (least upper bound) of the following

subsets of R (justify your claims):

(i)
{

2
n+1

: n ∈ N
}

; (4 marks)

(ii)
{

(−1)n
n3 : n ∈ Z+

}
; (4 marks)

(iii)
{
n(−1)n : n ∈ N

}
. (4 marks)

(i) Let A =
{

2
n+1

: n ∈ N
}

=
{

2, 2
3
, 2
4
, . . .

}
⊆ (0, 2]. Since 0 < 2

n+1
≤ 2 for all n ∈ N, it follows

that 0 is a lower bound of A and 2 is an upper bound of A.

Since 2 ∈ A (when n = 0), A cannot have any upper bounds lower than 2, hence supA = 2.

Let ε > 0 and N ∈ N. 2
N+1

< ε is satisfied when 2
ε
− 1 < N . Hence for each ε > 0, 2

n+1
< ε

for all n > ε
2
− 1, so inf A = 0.

(ii) Let B =
{

(−1)n
n3 : n ∈ Z+

}
=
{
−1, 1

8
,− 1

27
, . . .

}
⊆ [−1, 1

8
]. Since −1 ≤ (−1)n

n2 ≤ 1
8

for all

n ∈ N, it follows that −1 is a lower bound of B and 1
8

is an upper bound of B.

Since −1 ∈ B (when n = 1), B cannot have any lower bounds greater than 2, hence

inf B = −1.

Since 1
8
∈ B (when n = 2), B cannot have any upper bounds lower than 1

8
, hence supA = 1

8
.

(iii) Let C =
{
n(−1)n : n ∈ N

}
=
{

0, 1, 2, 1
3
, 4, 1

5
, 6, . . .

}
⊆ [0,∞). Since 0 ≤ n(−1)n < ∞ for all

n ∈ N, it follows that 0 is a lower bound of C.

Since 0 ∈ C (when n = 0), C cannot have any lower bounds greater than 0, hence inf C = 0.

Note that 2Z≥0 ⊆ C (ie. the non-negative even integers are a subset of C), hence for any

M ∈ R, {r ∈ 2Z≥0 : r > M} is non-empty and {r ∈ 2Z≥0 : r > M} ⊆ C, so C does not

have any upper bounds for there to be a least of.
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2. Let A be a subset of real numbers such that A contains only a finite number of elements. Is

it possible for the greatest lower bound of A to not be an element of A? Justify your claim.

(2 marks)

A set containing only a finite number of elements trivially has a minimum element, which trivially

by definition must be a lower bound. Any lower bound of a set that is also contained in the set

must trivially be the greatest lower bound.

For a general subset X ⊆ R, if minX exists and minX ∈ X then inf X = minX, which is

trivially the case when |X| <∞.
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3. Determine and explain whether the following sequences are - (a) bounded above/below,

(b) monotone increasing/decreasing, (c) convergent and (d) if they converge then also what their

limit is:

(i) ((−1)n)∞n=0 = (1,−1, 1,−1, . . .); (5 marks)

(ii) ( 2
n+1

)∞n=0 = (2, 1, 2
3
, 1
2
, 2
5
, 1
3
, . . .). (5 marks)

(i) It is trivially the case that −1 ≤ (−1)n ≤ 1 for all n ∈ N. Hence ((−1)n)∞n=0 is bounded

below by −1 and bounded above by 1.

It is enough to note that within the first three terms ((−1)n)∞n=0 decreases and then in-

creases again to conclude that ((−1)n)∞n=0 is not a monotonic sequence.

Since ((−1)n)∞n=0 oscillates back and forth between 1 and −1, there is trivially no limit.

(ii) It is trivially the case that 0 < 2
n+1
≤ 2 for all n ∈ N. Hence ( 2

n+1
)∞n=0 is bounded below

by 0 and bounded above by 2.

It is trivially the case that 2
n+1

< 2
n+2

for all n ∈ N, and hence that ( 2
n+1

)∞n=0 is monotoni-

cally decreasing.

Upon observing the first few terms, it appears as though ( 2
n+1

)∞n=0 converges towards 0.

Let ε > 0, in order for N ∈ N to satisfy 2
N+1

< ε, we require 2
ε
− 1 < N . It follows that for

each ε > 0, 2
n+1

< ε for all n ≥ 2
ε
− 1, and hence limn→∞

2
n+1

= 0.
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4. Let (an)∞n=0 and (bn)∞n=0 be sequences of real numbers. Prove that:

(i) if (an)∞n=0 and (bn)∞n=0 are bounded above then (anbn)∞n=0 is also bounded above; (3 marks)

(ii) if (an)∞n=0 and (bn)∞n=0 are monotone decreasing then (an +bn)∞n=0 is also monotone decreas-

ing; (3 marks)

(iii) if (an)∞n=0 and (bn)∞n=0 converge then (an + bn)∞n=0 also converges

[also prove that in such a case we have limn→∞(an + bn) = (limn→∞ an) + (limn→∞ bn)].

(3 marks)

(i) Let (an)∞n=0 = (bn)∞n=0 = (−n)∞n=0. Since −n ≤ 0 for all n ∈ N, both (an)∞n=0 and (bn)∞n=0

are bounded above. However (anbn)∞n=0 = (n2)∞n=0 which is trivially NOT bounded above,

hence it does not follow from (an)∞n=0 and (bn)∞n=0 being sequences of real numbers that are

bounded above that (anbn)∞n=0 will be a sequence of real numbers that is bounded above.

(ii) Proof. Let (an)∞n=0 and (bn)∞n=0 be sequences of monotonically decreasing real numbers.

Hence an < an+1 and bn < bn+1 for all n ∈ N. It trivially follows that an + bn < an+1 + bn+1

for all n ∈ N and hence that (ab + bn)∞n=0 is a monotonically decreasing sequence of real

numbers.

(iii) Proof. Let (an)∞n=0 and (bn)∞n=0 be sequences of real numbers that converge to La ∈ R and

Lb ∈ R respectively. Let ε > 0, since limn→∞ an = La and limn→∞ bn = Lb, there exists

Na, Nb ∈ N such that |an − La| < ε
2

for all n ≥ Na and |bn − Lb| < ε
2

for all n ≥ Nb.

It trivially follows that |(an + bn) − (La + Lb)| ≤ |an − La| + |bn − Lb| < ε
2

+ ε
2

= ε

for all n ≥ max{Na, Nb}, which establishes that limn→∞(an + bn) = La + Lb. Hence

limn→∞(an + bn) = (limn→∞ an) + (limn→∞ bn).
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5. Prove that if a sequence of real numbers is monotone decreasing and bounded below then it

converges to its infimum (aka greatest lower bound). (4 marks)

Proof. Let (yn)∞n=0 be a sequence of real numbers that is monotone decreasing and bounded

below. Since {yn : n ∈ N} has a lower bound, it follows from the Greatest-Lower-Bound Property

that {yn : n ∈ N} has a greatest lower bound in the real numbers, which we shall denote by l

(ie. inf {yn : n ∈ N} = l).

Now, for each ε > 0 there exists N ∈ N such that yN < l + ε, since otherwise l + ε would also

be an upper bound, which would contradict l being the greatest lower bound. Furthermore,

since yn ≤ yN for all n > N (which follows from (yn)∞n=0 being monotone decreasing), we have

yn < l + ε for all n ≥ N . Rearranging we get |yn − l| < ε for all n ≥ N , which establishes that

(yn)∞n=0 converges to l.
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