KMA315 Analysis 3A: Solutions to Problems 1

1. Find the infimum (greatest lower bound) and supremum (least upper bound) of the following subsets of \mathbb{R} (justify your claims):
(i) $\left\{\frac{2}{n+1}: n \in \mathbb{N}\right\}$; (4 marks)
(ii) $\left\{\frac{(-1)^{n}}{n^{3}}: n \in \mathbb{Z}_{+}\right\}$; (4 marks)
(iii) $\left\{n^{(-1)^{n}}: n \in \mathbb{N}\right\}$. (4 marks)
(i) Let $A=\left\{\frac{2}{n+1}: n \in \mathbb{N}\right\}=\left\{2, \frac{2}{3}, \frac{2}{4}, \ldots\right\} \subseteq(0,2]$. Since $0<\frac{2}{n+1} \leq 2$ for all $n \in \mathbb{N}$, it follows that 0 is a lower bound of A and 2 is an upper bound of A.

Since $2 \in A$ (when $n=0$), A cannot have any upper bounds lower than 2 , hence $\sup A=2$. Let $\varepsilon>0$ and $N \in \mathbb{N} . \frac{2}{N+1}<\varepsilon$ is satisfied when $\frac{2}{\varepsilon}-1<N$. Hence for each $\varepsilon>0, \frac{2}{n+1}<\varepsilon$ for all $n>\frac{\varepsilon}{2}-1$, so $\inf A=0$.
(ii) Let $B=\left\{\frac{(-1)^{n}}{n^{3}}: n \in \mathbb{Z}_{+}\right\}=\left\{-1, \frac{1}{8},-\frac{1}{27}, \ldots\right\} \subseteq\left[-1, \frac{1}{8}\right]$. Since $-1 \leq \frac{(-1)^{n}}{n^{2}} \leq \frac{1}{8}$ for all $n \in \mathbb{N}$, it follows that -1 is a lower bound of B and $\frac{1}{8}$ is an upper bound of B.

Since $-1 \in B$ (when $n=1$), B cannot have any lower bounds greater than 2 , hence $\inf B=-1$.

Since $\frac{1}{8} \in B$ (when $n=2$), B cannot have any upper bounds lower than $\frac{1}{8}$, hence $\sup A=\frac{1}{8}$.
(iii) Let $C=\left\{n^{(-1)^{n}}: n \in \mathbb{N}\right\}=\left\{0,1,2, \frac{1}{3}, 4, \frac{1}{5}, 6, \ldots\right\} \subseteq[0, \infty)$. Since $0 \leq n^{(-1)^{n}}<\infty$ for all $n \in \mathbb{N}$, it follows that 0 is a lower bound of C.

Since $0 \in C$ (when $n=0$), C cannot have any lower bounds greater than 0 , hence inf $C=0$.
Note that $2 \mathbb{Z}_{\geq 0} \subseteq C$ (ie. the non-negative even integers are a subset of C), hence for any $M \in \mathbb{R},\left\{r \in 2 \mathbb{Z}_{\geq 0}: r>M\right\}$ is non-empty and $\left\{r \in 2 \mathbb{Z}_{\geq 0}: r>M\right\} \subseteq C$, so C does not have any upper bounds for there to be a least of.

Nicholas Ham, Room 425
2. Let A be a subset of real numbers such that A contains only a finite number of elements. Is it possible for the greatest lower bound of A to not be an element of A ? Justify your claim. (2 marks)

A set containing only a finite number of elements trivially has a minimum element, which trivially by definition must be a lower bound. Any lower bound of a set that is also contained in the set must trivially be the greatest lower bound.

For a general subset $X \subseteq \mathbb{R}$, if $\min X$ exists and $\min X \in X$ then $\inf X=\min X$, which is trivially the case when $|X|<\infty$.
3. Determine and explain whether the following sequences are - (a) bounded above/below, (b) monotone increasing/decreasing, (c) convergent and (d) if they converge then also what their limit is:
(i) $\left((-1)^{n}\right)_{n=0}^{\infty}=(1,-1,1,-1, \ldots) ;(5$ marks $)$
(ii) $\left(\frac{2}{n+1}\right)_{n=0}^{\infty}=\left(2,1, \frac{2}{3}, \frac{1}{2}, \frac{2}{5}, \frac{1}{3}, \ldots\right) .(5$ marks)
(i) It is trivially the case that $-1 \leq(-1)^{n} \leq 1$ for all $n \in \mathbb{N}$. Hence $\left((-1)^{n}\right)_{n=0}^{\infty}$ is bounded below by -1 and bounded above by 1 .

It is enough to note that within the first three terms $\left((-1)^{n}\right)_{n=0}^{\infty}$ decreases and then increases again to conclude that $\left((-1)^{n}\right)_{n=0}^{\infty}$ is not a monotonic sequence.

Since $\left((-1)^{n}\right)_{n=0}^{\infty}$ oscillates back and forth between 1 and -1 , there is trivially no limit.
(ii) It is trivially the case that $0<\frac{2}{n+1} \leq 2$ for all $n \in \mathbb{N}$. Hence $\left(\frac{2}{n+1}\right)_{n=0}^{\infty}$ is bounded below by 0 and bounded above by 2 .

It is trivially the case that $\frac{2}{n+1}<\frac{2}{n+2}$ for all $n \in \mathbb{N}$, and hence that $\left(\frac{2}{n+1}\right)_{n=0}^{\infty}$ is monotonically decreasing.

Upon observing the first few terms, it appears as though $\left(\frac{2}{n+1}\right)_{n=0}^{\infty}$ converges towards 0 . Let $\varepsilon>0$, in order for $N \in \mathbb{N}$ to satisfy $\frac{2}{N+1}<\varepsilon$, we require $\frac{2}{\varepsilon}-1<N$. It follows that for each $\varepsilon>0, \frac{2}{n+1}<\varepsilon$ for all $n \geq \frac{2}{\varepsilon}-1$, and hence $\lim _{n \rightarrow \infty} \frac{2}{n+1}=0$.
4. Let $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ be sequences of real numbers. Prove that:
(i) if $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ are bounded above then $\left(a_{n} b_{n}\right)_{n=0}^{\infty}$ is also bounded above; (3 marks)
(ii) if $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ are monotone decreasing then $\left(a_{n}+b_{n}\right)_{n=0}^{\infty}$ is also monotone decreasing; (3 marks)
(iii) if $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ converge then $\left(a_{n}+b_{n}\right)_{n=0}^{\infty}$ also converges [also prove that in such a case we have $\left.\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)+\left(\lim _{n \rightarrow \infty} b_{n}\right)\right]$. (3 marks)
(i) Let $\left(a_{n}\right)_{n=0}^{\infty}=\left(b_{n}\right)_{n=0}^{\infty}=(-n)_{n=0}^{\infty}$. Since $-n \leq 0$ for all $n \in \mathbb{N}$, both $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ are bounded above. However $\left(a_{n} b_{n}\right)_{n=0}^{\infty}=\left(n^{2}\right)_{n=0}^{\infty}$ which is trivially NOT bounded above, hence it does not follow from $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ being sequences of real numbers that are bounded above that $\left(a_{n} b_{n}\right)_{n=0}^{\infty}$ will be a sequence of real numbers that is bounded above.
(ii) Proof. Let $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ be sequences of monotonically decreasing real numbers. Hence $a_{n}<a_{n+1}$ and $b_{n}<b_{n+1}$ for all $n \in \mathbb{N}$. It trivially follows that $a_{n}+b_{n}<a_{n+1}+b_{n+1}$ for all $n \in \mathbb{N}$ and hence that $\left(a_{b}+b_{n}\right)_{n=0}^{\infty}$ is a monotonically decreasing sequence of real numbers.
(iii) Proof. Let $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ be sequences of real numbers that converge to $L_{a} \in \mathbb{R}$ and $L_{b} \in \mathbb{R}$ respectively. Let $\varepsilon>0$, since $\lim _{n \rightarrow \infty} a_{n}=L_{a}$ and $\lim _{n \rightarrow \infty} b_{n}=L_{b}$, there exists $N_{a}, N_{b} \in \mathbb{N}$ such that $\left|a_{n}-L_{a}\right|<\frac{\varepsilon}{2}$ for all $n \geq N_{a}$ and $\left|b_{n}-L_{b}\right|<\frac{\varepsilon}{2}$ for all $n \geq N_{b}$. It trivially follows that $\left|\left(a_{n}+b_{n}\right)-\left(L_{a}+L_{b}\right)\right| \leq\left|a_{n}-L_{a}\right|+\left|b_{n}-L_{b}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ for all $n \geq \max \left\{N_{a}, N_{b}\right\}$, which establishes that $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L_{a}+L_{b}$. Hence $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)+\left(\lim _{n \rightarrow \infty} b_{n}\right)$.
5. Prove that if a sequence of real numbers is monotone decreasing and bounded below then it converges to its infimum (aka greatest lower bound). (4 marks)

Proof. Let $\left(y_{n}\right)_{n=0}^{\infty}$ be a sequence of real numbers that is monotone decreasing and bounded below. Since $\left\{y_{n}: n \in \mathbb{N}\right\}$ has a lower bound, it follows from the Greatest-Lower-Bound Property that $\left\{y_{n}: n \in \mathbb{N}\right\}$ has a greatest lower bound in the real numbers, which we shall denote by l (ie. $\inf \left\{y_{n}: n \in \mathbb{N}\right\}=l$).

Now, for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $y_{N}<l+\varepsilon$, since otherwise $l+\varepsilon$ would also be an upper bound, which would contradict l being the greatest lower bound. Furthermore, since $y_{n} \leq y_{N}$ for all $n>N$ (which follows from $\left(y_{n}\right)_{n=0}^{\infty}$ being monotone decreasing), we have $y_{n}<l+\varepsilon$ for all $n \geq N$. Rearranging we get $\left|y_{n}-l\right|<\varepsilon$ for all $n \geq N$, which establishes that $\left(y_{n}\right)_{n=0}^{\infty}$ converges to l.

